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Abstract

Divergence v1 is a novel noncustodial automated market maker for options with a
predetermined payoff structure. It enables access to an extensive selection of options
pools, each with a distinct underlying asset, strike price, maturity, and collateral
token. The decentralized protocol facilitates on-chain peer-to-pool swaps of options
tokens, with minimal friction, enhanced capital efficiency, and low transaction costs.
Its model-free pricing approach empowers individual users to flexibly price and tailor
options exposure.

Introduction

Existing DeFi protocols have auctioned and settled tokenized options on-chain. Yet, there
is a notable absence of a liquid and low-friction decentralized options market, where users
can trade from self-custodied wallets at their chosen times and prices, with control over
specifications including underlying assets, strike prices, maturities, and quote assets.

Divergence v1 proposes a permissionless, noncustodial automated market maker (AMM)
for options with a predetermined payoff structure. Its fundamental idea is to facilitate
real-time price discovery of options in DeFi.

In market transactions, the protocol eliminates the mandate for smart contracts
or external agents to price options through traditional theoretical models, such as the
Black–Scholes model. This model-free approach removes the need for gas-consuming
computations and trust-based set-ups. It ensures reliable execution under extreme mar-
ket conditions, without the constraints of preconceived model assumptions and ensuing
adjustments. Crucially, it empowers buyers and sellers to price options at their own
discretion, potentially setting the stage for higher-order volatility derivatives [3].
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Tokenized Options

An option gives its holder the right, not the obligation, to engage in a financial transac-
tion involving an asset or a basket of assets. A standard European call or put option,
respectively, provides the right to buy or sell an asset for its strike price at maturity. The
European style settlement permits the exercise of options at maturity.

Unlike standard options, digital options, also called binary or bet options, represent
the right to receive a fixed amount of payout. These options offer the advantage of having
a predetermined risk and reward prior to a transaction. Digital options can serve as
building blocks of standard options [1] and replicate the payoff structure of any financial
asset [2]. They are versatile instruments for trading DeFi asset volatility, and provide a
suitable hedge against sudden price moves of illiquid underlying assets. They are also
useful in other areas, including but not limited to prediction markets.

At maturity T, a European digital call on an asset worth ST with strike K pays:1, ST ≥ K

0, ST < K
(1)

A European digital put with the same specification pays:0, ST ≥ K

1, ST < K
(2)

The payout of a portfolio holding a digital call and a digital put is therefore:1, ST ≥ K

1, ST < K
(3)

Let a pool (Battle) contract facilitate minting, swapping and settling of digital calls
as token 0 (Spear), and digital puts as token 1 (Shield) for a chosen underlying asset,
strike, maturity, and an ERC-20 token collateral used as a quote asset.

To swap for a digital call (put) amount ∆V0 (∆V1), a trader sends a collateral amount
∆C0 (∆C1) to the pool contract, which gives us the effective price of options:

P0
c =

∆C0

∆V0

(4)

P1
c =

∆C1

∆V1

(5)

At time t < T, digital calls and puts are valued at a discount to their probable payout
of one collateral at maturity. i.e., P0

c, P1
c ∈ (0, 1) but practically set within [0.01, 0.99].
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At maturity T, the holder of a digital call (or put) option is entitled to receive one
collateral token, provided that the price of the underlying asset meets or exceeds (or falls
below) the specified strike price.

The options are considered Cash-or-Nothing if stable coins are paid out, or Asset-or-
Nothing if (wrapped) underlying assets are paid out. If a token other than stable coins or
(wrapped) underlying assets is used as collateral, the options payout may exhibit varying
correlation or no correlation at all with the underlying price.

Put-call Parity

Consider a portfolio holding a digital call and a digital put. According to the principle
of put-call parity, it is valued at a forward contract delivering one collateral. A riskless
profit can be made if a digital call and a digital put can be simultaneously bought for
less than one collateral, given that either option pays out one collateral at maturity. The
same holds true if a digital call and a digital put can be simultaneously sold for more
than one collateral. To remain free of arbitrage, effective prices for digital calls and puts
must add up to one:

∆C0

∆V0

+
∆C1

∆V1

= 1 (6)

When ∆V0 and ∆V1 are held equal, the expected return for holding ∆V0 is the same
as the collateral value of ∆V1, i.e. ∆C1, and vice versa:

∆V0 = ∆C1 +∆C0 (7)

∆V1 = ∆C1 +∆C0 (8)

When ∆V0 = ∆V1 = 1, ∆C0 and ∆C1 represent the value of token 0 and 1, respec-
tively. The price of token 1 quoted by token 0 is conveniently:

P1
0 =

∆C1

∆C0

(9)

which is bounded within [1/99, 99]. P1
0 can be converted to the price of token 0 and

1 per collateral:

P0
c =

1

1 + P1
0

(10)

P1
c =

P1
0

1 + P1
0

(11)
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Virtual Curve

Let us establish the relationship between collateral amounts C0 and C1, using the constant
product function [4]: (

C0 +
L√
PH

)(
C1 + L

√
PL

)
= L2 (12)

For [PL, PH] inside [1/99, 99], liquidity is active when P1
0 is in range. When P1

0 exits
this range, liquidity is deactivated. Per (10), (11), liquidity provided to the range [PL,
PH] is available at [ PL

1+PL
, PH

1+PH
] for token 1, and [ 1

1+PH
, 1

1+PL
] for token 0.

The pool tracks the current sqrtPrice
√

P1
0, with ∆

√
P1
0 reflecting collateral deltas:

∆C0 = ∆
1√
P1
0

· L (13)

∆C1 = ∆
√

P1
0 · L (14)

Triangular Swaps

Traders can swap collateral for either digital calls or puts. These swaps are long-only,
comparable to market buying options in a traditional order book.

The virtual curve enables swaps via an arbitrage-free triangulation of exchange rates
P0
c, P1

c and P1
0. Specifically, for an infinitesimal liquidity interval, no profit should be made

from triangular swaps that theoretically proceed from ∆C0 to ∆C1 to ∆V1 to ∆V0, and
finally back to ∆C0, and similarly when executed in reverse.

To demonstrate that this triangulation is arbitrage-free, consider an amount of ∆C′
0,

which is to be triangulated for a digital call amount ∆V0, and is converted back to ∆C0.
This calls for:

∆C′
0

∆C′
1

∆C′
1

∆V′
1

∆V′
1

∆V0

=
∆C0

∆V0

(15)

First, ∆C′
0 is swapped via the virtual curve to ∆C′

1, which is exchangeable to a digital
put amount ∆V′

1 per equation (8):

∆V′
1 = ∆C′

1 +∆C′
0 (16)

where ∆C′
0 is paid out if and only if ∆V′

1 settles in-the-money. Per equation (7),
when exchanged for ∆C0, the digital call amount ∆V0 also expects a return of ∆C′

1,
claimable at expiry if and only if ∆V0 settles in-the-money.:

∆V0 = ∆C′
1 +∆C0 (17)
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As we require ∆V0 = ∆V1
′ for the same liquidity interval, ∆C′

0 must equal ∆C0.
Our proof, therefore, confirms that this triangular swap mechanism is free from arbitrage
under the given conditions.

Swap Equations

In practice, a trader needs not triangulate prices for a pool. At the start of a swap ∆
√

P1
0

is derived from collateral input deltas using equations (13), (14). Subsequently, options
token outputs can be conveniently computed from ∆

√
P1
0 and the liquidity invariant, by

combining equations (7), (8) and (13), (14):

∆V0 = ∆
√

P1
0 · L +∆

1√
P1
0

· L (18)

∆V1 = ∆
√

P1
0 · L +∆

1√
P1
0

· L (19)

The direction of a swap determines whether the output is ∆V0 or ∆V1. When a
trader swaps in options premiums ∆C0 (or ∆C1), the current sqrtPrice

√
P 1
0 moves

lower (higher). The pool reserves ∆C0 and ∆C1 for contingent payout at settlement.
A ∆V0 (or ∆V1) output amount is minted, as the sqrtPrice moves within an active
liquidity range.

Essentially, the collateral premiums ∆C0 for call options (or ∆C1 for put options)
can meet the contingent claims of any new puts ∆V1 (or calls ∆V0) to be minted for the
same liquidity interval. To enable a swap, the expected return ∆C1 for call options (or
∆C0 for put options) is provided by seed liquidity.

Convertible Liquidity

Divergence v1 liquidity providers (LPs) are passive sellers of digital options. In a chosen
price range, LPs can convert collateral to digital options exposures, or vice versa. They
collect fees while taking on or off defined risks.

A liquidity position is minted as a non-fungible token (NFT), using collateral or prior
purchased options tokens. LPs can opt for one of the three liquidity types: seedCollateral,
seedSpear, or seedShield.

Initiating a liquidity position does not increase the circulation of options tokens.
Options tokens are not minted until a buy transaction occurs within range. Once used as
seedSpear or seedShield liquidity, options tokens are burnt and taken out of circulation.
Unsold amounts, if any, can be reminted and reclaimed upon liquidity withdrawal.

For swap execution, the pool contract uses the aggregated liquidity invariant and
does not track liquidity amounts for individual positions. Instead, the specific liquidity
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invariant of each LP is recorded at the individual position level, and is calculated using
different methods when the position is initiated.

When an amount of seedCollateral is provided, it is considered as ∆C0 and/or
∆C1, based on the current sqrtPrice relative to the selected price range:

∆C0 =


∆L

(
1√
PL

− 1√
PH

)
,

√
P1
0 <

√
PL

∆L

(
1√
P1
0

− 1√
PH

)
,

√
PL ≤

√
P1
0 <

√
PH

0,
√

P1
0 ≥

√
PH

(20)

∆C1 =


0,

√
P1
0 <

√
PL

∆L
(√

P1
0 −

√
PL

)
,

√
PL ≤

√
P1
0 <

√
PH

∆L
(√

PH −
√
PL

)
,

√
P1
0 ≥

√
PH

(21)

As equations (20), (21) suggest, Initiating an in-range liquidity position for a given col-
lateral amount is similar to combining two out-of-range positions with a shared boundary
of

√
P1
0.

In comparison, seedSpear (seedShield) liquidity must be added to a price range
below (above) the current sqrtPrice level by adapting equations (18), (19):

∆V0 =

 0,
√

P1
0 ≤

√
PL

∆L ·
(√

PH −
√
PL

)(
1 +

1√
PH · PL

)
,

√
P1
0 ≥

√
PH

(22)

∆V1 =

 ∆L ·
(√

PH −
√
PL

)(
1 +

1√
PH · PL

)
,

√
P1
0 ≤

√
PL

0,
√

P1
0 ≥

√
PH

(23)

A liquidity position can accumulate unlimited gross shorts in both digital calls and
puts, achieving auto risk-reduction through offsetting short call and put exposures. Its
net shorts in calls or puts define its open exposure. The amount of net shorts are capped
by the position’s price boundaries, per equations (22), (23). As detailed in the Seller
Obligations section, these net shorts are backed by the seed liquidity provided by the
LPs to ensure their solvency.

The open options exposures of a position is impermanent until liquidity is removed
from the pool. If the price crosses back a liquidity interval before liquidity is removed,
options exposures are reversed. There are important distinctions from traditional limit
orders for each liquidity type:

• A seedCollateral liquidity position is similar to a limit order to naked short either
digital calls or puts. It works as an alternative to long-only swaps, as a short digital
call (put) has the same expected return as a long digital put (call). As the price
crosses back, the net short exposures in digital options are effectively reduced.
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• A seedSpear (or seedShield) liquidity position acts like a limit close order for an
existing long position. It is treated similarly as one with seedCollateral as the
price crosses back. The options sale proceeds are effectively used as liquidity, which
reverses the close order.

C0

C1

+∆C0

−∆V0

√
P1
0 ↓

C0

C1

−∆V1

+∆C1

√
P1
0 ↑

Figure 1: Swapping Collateral for Digital Call (left) or Put (right)

C0

C1

+∆C1

+∆V0

√
P1
0 ↓

C0

C1

+∆V1

+∆C0 √
P1
0 ↑

Figure 2: Adding Liquidity for Digital Call (left) or Put (right)

Ticks

Ticks form the discrete boundaries of active liquidity ranges. The pool contract identifies
the virtual curve

√
P0
1 by an integer index i:√

P0
1(i) =

√
1.0001

i
(24)

The nearest tick below the last price is recorded as the current tick:

ic =

⌊
log√1.0001

√
P0
1

⌋
(25)
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Only ticks with indexes that are divisible by a default tickSpacing of 30 can be
initialized as position boundaries.

Growth Variables

To account for fees and token deltas accrued at an individual liquidity position, GrowthX128
info struct of fees, collateral inputs (collateralIn), and options token outputs (spearOut,
shieldOut) are tracked per unit of liquidity at the pool (global), tick (outside) and
position (InsideLast).

When a tick is initialized, GrowthX128Outside variables are treated as occurring below
that tick. They are updated only when an initialized tick is crossed. As an example for
all growth variables, collateralIn is used to record the cumulative collateral premiums
from selling digital call and put options:

CinOutside := CinGlobal − CinOutside(i) (26)

The GrowthX128Below and GrowthX128Above of collateralIn for a tick i are:

CinAbove(i) =

CinGlobal − CinOutside(i) ic ≥ i

CinOutside(i) ic < i
(27)

CinBelow(i) =

CinOutside(i) ic ≥ i

CinGlobal − CinOutside(i) ic < i
(28)

The GrowthInside of collateralIn between a lower tick il and an upper tick iu is:

CinInside = CinGlobal − CinBelow(il)− CinAbove(iu) (29)

The pro rata share of collateralIn owed to an LP between time t0 and t1 is computed
with the given liquidity invariant of a position:

CinOwed = L · (CinInside(t1)− CinInside(t0)) (30)

Seller Obligations

For every option sold, an equivalent amount of collateral is set aside for settlement. The
seedCollateral of a liquidity position first backs options sold in a single direction, with
the collateralIn received then backing options sold in both directions subsequently.

When liquidity is withdrawn, the pool reserves collateral matching the greater of
spearObligation (V0Obligation) or shieldObligation (V1Obligation). In the case of liquid-
ity positions with seedSpear or seedShield, the obligations for options sold up to those
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seeded amounts are met by their originating positions. Therefore after adjustments:

V0Obligation =

V0outOwed − V0seed V0outOwed > V0seed

0 V0outOwed ≤ V0seed

(31)

V1Obligation =

V1outOwed − V1seed V1outOwed > V1seed

0 V1outOwed ≤ V1seed

(32)

A liquidity range established above the initial sqrtPrice must be crossed from the
lower toward the upper bound, before it can be crossed back. Its cumulative gross shorts
in puts (V1outOwed) can exceed those in calls (V0outOwed). The difference is capped by the
maximum amount of put output in a single trade across the range, as determined by
equation (23) for seedShield computation:

V1outOwed − V0outOwed ≤ V1seed (33)

Conversely, per equation (22), liquidity range set below the initial sqrtPrice have:

V0outOwed − V1outOwed ≤ V0seed (34)

The net short exposure of a position is therefore capped by its seedSpear or seedShield
liquidity, and fully backed by its seedCollateral:

VnetObligation =



V0Obligation − V1Obligation V0Obligation > V1Obligation, ST ≥ K

0 V0Obligation > V1Obligation, ST < K

0 V0Obligation ≤ V1Obligation, ST ≥ K

V1Obligation − V0Obligation V0Obligation ≤ V1Obligation, ST < K

(35)

When liquidity is withdrawn before expiry, a position’s options exposures are finalized.
It has to reserve for settlement:

Cobligation = max(V0Obligation, V1Obligation) (36)

Remaining collateral amount is returned:

Cowed = Cseed + CinOwed − Cobligation (37)

Unsold amounts of seedSpear or seedShield are also reclaimed:

V0owed =

V0seed − V0outOwed V0seed > V0outOwed

0 V0seed ≤ V0outOwed

(38)

9



V1owed =

V1seed − V1outOwed V1seed > V1outOwed

0 V1seed ≤ V1outOwed

(39)

LPs can redeemObligation before settlement to fully close out net short exposures.
This is comparable to the traditional short-covering process, where sellers buy back the
asset to neutralize short exposure. After removing liquidity, LPs can send back to the
pool a Spear or Shield amount matching their net obligation to reclaim an equal amount
of collateral reserved for settlement.

Settlement

Once options expire, options pools are settled by public functions, which secure the under-
lying prices from an external oracle. Holders of in-the-money options can exercise options
to collect payouts. For options that expire out-of-money, LPs can withdrawObligation

to claim collateral amounts matching their net obligations.

Fees

Transaction fees are set at 0.3% on the notional value of options and paid in collateral
tokens, ensuring an even distribution of fees across the entire price curve. An exercise
fee of 0.15% is applied when option holders claim payoffs. The protocol retains 30% of
the transaction fee, as well as the exercise fee. Alternative fee structures are electable via
community governance.

References

[1] Reiner, E. and Rubinstein, M.: ‘Unscrambling the Binary Code.’ Risk, no.4 (1991):
75-83.

[2] Blyth, S.: An Introduction to Quantitative Finance, Oxford University Press, 2013.

[3] Carr P, Wu L.: ’A tale of two indices’, The Journal of Derivatives. Vol 13, no. 3
(2006), 13-29.

[4] Hayden, A., Zinsmeister, N., Salem, M., Keefer, R., and Robinson, D.: Uniswap
v3 core. Technical report, 2021. Retrieved Friday 15th December, 2023 from
https://uniswap.org/whitepaper-v3.pdf

10


